11 research outputs found

    Agents with Affective Traits for Decision-Making in Complex Environments

    Full text link
    Recent events have probably lead us to wonder why people make decisions that seem to be irrational, and that go against any easily understandable logic. The fact that these decisions are emotionally driven often explains what, at first glance, does not have a plausible explanation. Evidence has been found that proves that emotions and other affective characteristics guide decisions beyond a purely rational deliberation. Understanding the way emotions take place, the way emotions change, and/or the way emotions influence behavior, has traditionally been a concern of several fields including psychology and neurology. Moreover, other sciences such as behavioral economics, artificial intelligence, and in general, all sciences that aim to understand, explain, or simulate human behavior, acknowledge the important role of affective characteristics in this task. Specifically, artificial intelligence uses psychological findings in order to create agents that simulate human behavior. Nevertheless, individual research efforts in modeling affective characteristics are often overlapped, short of integration, and they lack of a common conceptual system. This deprives individual researches of the exchange and cooperation's inherent benefits, and makes the task of computationally simulating affective characteristics more difficult. Although much individual effort has been put in classifying, formalizing and modeling emotions and emotion theories on some fields, recognized researchers of emotions' and affective processes' modeling report that a common formal language, an informal conceptual system, and a general purpose affective agent architecture will greatly improve the interdisciplinary exchange and the intradisciplinary coordination. The research literature proposes a wide amount of affective models that deal with some of: relationship between emotions and cognition, relationship between emotions and behavior, emotions and their evolutionary account, emotions for appraising situations, emotion regulation, etc. These models are useful tools for addressing particular emotion-related issues. Furthermore, computational approaches that are based on particular psychological theories have also been proposed. They often address domain specific issues starting from a specific psychological theory. In such solutions, the absence of a common conceptual system and/or platform, makes difficult the feedback between psychological theories and computational approaches. This thesis systematizes and formalizes affect-related theories, what can benefit the interdisciplinary exchange, the intradisciplinary coordination, and hence, allows the improvement of involved disciplines. Specifically this thesis makes the following contributions: (1) a theoretical framework that includes the main processes and concepts that a model of an affective agent with practical reasoning should have; (2) a general-purpose affective agent architecture that shares the concepts of the proposed theoretical framework; (3) an implementation-independent formal language for designing affective agents that have the proposed architecture; and (4) a specific agent language for implementing affective agents which is an extension of a BDI language. Some studies with human participants have helped to validate the contributions of this thesis. They include classical games of game theory, and an study with 300 participants, which have provided the necessary information to evaluate the contributions. The validation has been performed in three directions: determine whether the proposed computational approach represents better the human behavior than traditional computational approaches; determine whether this approach allows to improve psychological theories used by default; and determine whether the proposed affective agents' behavior is closer to human behavior than the behavior of a purely rational agent.Probablemente algunos eventos recientes nos han conducido a preguntarnos por qué las personas toman decisiones aparentemente irracionales y en contra de alguna lógica fácilmente comprensible. El hecho de que estas decisiones estén bajo la influencia de las emociones a menudo explica lo que, a primera vista, parece no tener una explicación aceptable. En este sentido, se han encontrado evidencias que prueban que las emociones y otras características afectivas condicionan las decisiones más allá de una deliberación meramente racional. Entender cómo las emociones tienen lugar, cómo cambian y cómo influyen en el comportamiento, ha sido tradicionalmente de interés para muchos campos de investigación, incluyendo la psicología y la neurología. Además, otras ciencias como la economía conductual o la inteligencia artificial reconocen el importante papel de las características afectivas en esta tarea. Específicamente, la inteligencia artificial utiliza los resultados obtenidos en psicología para crear agentes que simulan el comportamiento humano. Sin embargo, a menudo los esfuerzos individuales de investigación en el modelado del afecto se solapan, carecen de la suficiente integración y de un sistema conceptual común. Esto limita a las investigaciones individuales para disponer de los beneficios que ofrecen el intercambio y la cooperación, y hace más compleja la tarea de simular los procesos afectivos. Las emociones y teorías relacionadas han sido clasificadas, formalizadas y modeladas. No obstante, reconocidos investigadores argumentan que un lenguaje formal común, un sistema conceptual informal y una arquitectura de agentes de propósito general, mejorarán significativamente el intercambio interdisciplinar y la coordinación intradisciplinar. En la literatura se propone una amplia cantidad de modelos afectivos que modelan: la relación entre las emociones y la cognición, la relación entre las emociones y el comportamiento, las emociones para evaluar las situaciones, la regulación de emociones, etc. Estos modelos son herramientas útiles para abordar aspectos particulares relacionados con las emociones. Además, se han realizado propuestas computacionales que abordan aspectos específicos sobre la base de teorías psicológicas específicas. En éstas soluciones, la ausencia de una plataforma y/o sistema conceptual dificulta la retroalimentación entre las teorías psicológicas y las propuestas computacionales. Esta tesis sistematiza y formaliza teorías relacionadas con el afecto, lo cual beneficia el intercambio interdisciplinar y la coordinación intradisciplinar, y por tanto, permite el desarrollo de las disciplinas correspondientes. Específicamente esta tesis realiza las siguientes contribuciones: (1) una plataforma teórica que incluye los conceptos y procesos principales que debería poseer un modelo de agentes afectivos con razonamiento práctico; (2) una arquitectura de agentes de propósito general que comparte los conceptos de la plataforma teórica propuesta; (3) un lenguaje formal independiente de la implementación, para diseñar agentes afectivos que poseen la arquitectura propuesta; y (4) un lenguaje de agentes específico para implementar agentes afectivos el cual es un extensión de un lenguaje BDI. Algunos estudios con participantes humanos han ayudado a validar las contribuciones de esta tesis. Estos incluyen juegos clásicos de teoría de juegos y un estudio con 300 participantes, los cuales han proporcionado la información necesaria para evaluar las contribuciones. La validación se ha realizado en tres direcciones: determinar si la propuesta computacional que se ha realizado representa mejor el comportamiento humano que propuestas computacionales tradicionales; determinar si esta propuesta permite mejorar las teorías psicológicas empleadas por defecto; y determinar si el comportamiento de los agentes afectivos propuestos se acerca más al comportamiento humano que el comporProbablement alguns esdeveniments recents ens han conduït a preguntar-nos per què les persones prenen decisions que aparentment són irracionals i que van en contra d'algun tipus de lògica fàcilment comprensible. El fet que aquestes decisions estiguin sota la influència de les emocions sovint explica el que, a primera vista, sembla no tenir una explicació acceptable. En aquest sentit, s'han trobat evidències que proven que les emocions i altres característiques afectives condicionen les decisions més enllà d'una deliberació merament racional. Entendre com les emocions tenen lloc, com canvien i com influeixen en el comportament, ha estat tradicionalment d'interès per a molts camps d'investigació, incloent la psicologia i la neurologia. A més, altres ciències com l'economia conductual, la intel·ligència artificial i, en general, totes les ciències que intenten entendre, explicar o simular el comportament humà, reconeixen l'important paper de les característiques afectives en aquesta tasca. Específicament, la intel·ligència artificial utilitza els resultats obtinguts en psicologia per crear agents que simulen el comportament humà. No obstant això, sovint els esforços individuals d'investigació en el modelatge de l'afecte es solapen, no tenen la suficient integració ni compten amb un sistema conceptual comú. Això limita a les investigacions individuals, que no poden disposar dels beneficis que ofereixen l'intercanvi i la cooperació, i fa més complexa la tasca de simular els processos afectius. Les emocions i teories relacionades han estat classificades, formalitzades i modelades. No obstant això reconeguts investigadors argumenten que un llenguatge formal comú, un sistema conceptual informal i una arquitectura d'agents de propòsit general, milloraran significativament l'intercanvi interdisciplinar i la coordinació intradisciplinar. En la literatura es proposa una àmplia quantitat de models afectius que modelen: la relació entre les emocions i la cognició, la relació entre les emocions i el comportament, les emocions per avaluar les situacions, la regulació d'emocions, etc. Aquests models són eines útils per abordar aspectes particulars relacionats amb les emocions. A més, s'han realitzat propostes computacionals que aborden aspectes específics sobre la base de teories psicològiques específiques. En aquestes solucions, l'absència d'una plataforma i/o sistema conceptual dificulta la retroalimentació entre les teories psicològiques i les propostes computacionals. Aquesta tesi sistematitza i formalitza teories relacionades amb l'afecte, la qual cosa beneficia l'intercanvi interdisciplinar i la coordinació intradisciplinar, i per tant, permet el desenvolupament de les disciplines corresponents. Específicament aquesta tesi realitza les següents contribucions: (1) una plataforma teòrica que inclou els conceptes i processos principals que hauria de posseir un model d'agents afectius amb raonament pràctic; (2) una arquitectura d'agents de propòsit general que comparteix els conceptes de la plataforma teòrica proposta; (3) un llenguatge formal independent de la implementació, per dissenyar agents afectius que posseeixen l'arquitectura proposada; i (4) un llenguatge d'agents específic per implementar agents afectius el qual és un extensió d'un llenguatge BDI. Alguns estudis amb participants humans han ajudat a validar les contribucions d'aquesta tesi. Aquests inclouen jocs clàssics de teoria de jocs i un estudi amb 300 participants, els quals han proporcionat la informació necessària per avaluar les contribucions. La validació s'ha realitzat en tres direccions: determinar si la proposta computacional que s'ha realitzat representa millor el comportament humà que propostes computacionals tradicionals; determinar si aquesta proposta permet millorar les teories psicològiques emprades per defecte; i determinar si el comportament dels agents afectius proposats s'acosta més alAlfonso Espinosa, B. (2017). Agents with Affective Traits for Decision-Making in Complex Environments [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90497TESI

    Designing an Affective Intelligent Agent on GenIA³

    Full text link
    GenIA³ is a General-purpose Intelligent Affective Agent Architecture, which can be committed with specific psychological theories to create the design of the final agent. Intelligent affective agents can be implemented by using the default design of GenIA³. Also GenIA³ helps experts on fields like psychology or behavioral computing, to provide more precise and refined ways of describing each particular affective process, facilitating the abstraction from irrelevant implementation or design details, and offering a default design for the main processes. Nevertheless an extensive set of domains need to be tested in order to properly validate and refine GenIA³. In this work we describe the default design of GenIA³, and we propose an alternative design which is based on a model of emotions previously proposed. This illustrates the flexibility of GenIA³ and may inspire other alternative designs.Alfonso Espinosa, B. (2017). Designing an Affective Intelligent Agent on GenIA³. http://hdl.handle.net/10251/7849

    Agentes BDI bajo interacciones reguladas: un enfoque basado en flujos de trabajo

    Full text link
    [ES] Un agente en un entorno multi-agente necesita comunicarse con otros para lograr sus objetivos. Los protocolos de interacción regulan estas interacciones estableciendo precedencias y restricciones en la secuencia de mensajes a intercambiar. Por otra parte, la naturaleza inteligente, proactiva y autónoma de los agentes es fácilmente representada a través de lenguajes de programación de alto nivel como AgentSpeak(L). En este trabajo se ofrece un mecanismo para que agentes programados en Jason, el cual es una extensión de AgentSpeak(L) y se basa en el modelo BDI de agentes, puedan hacer uso de protocolos de interacción según los estándares de FIPA. Un gestor de conversaciones estará a cargo de la creación y control de estas conversaciones en la plataforma, de manera que se abstrae al programador de aspectos como errores de sincronización, tiempos de espera etc. Además se extiende esta propuesta, con una herramienta de modelado que permite especificar los agentes en un sistema en términos de sus interacciones y las relaciones entre ellas, considerándose para ello los roles, estados de los agentes o condiciones que deban cumplirse durante la ejecución de sus acciones.[EN] In a multi-agent environment, an agent needs to communicate with others to achieve its goals. The interaction protocols regulate those interactions by establishing precedences and restrictions on the sequence of messages to be exchanged. On the other hand, the smart, proactive and autonomous nature of agents can be easily represented through high level programming languages such as AgentSpeak(L). This approach offers a mechanism in order to allow agents programmed in Jason, which is an extension of AgentSpeak (L) and is based on the BDI model of agents, to use the interaction protocols according to FIPA standards. A conversation manager will be responsible of the creation and control of these conversations on the platform, so that it prevents the developer from issues such as synchronization errors, timeouts and so on. Besides, this proposal is extended with a modeling tool that allows specifying the agents in a system in terms of their interactions and relationships between them, taking in to account the roles, the agent's states or conditions to be met during the execution of their actions.Alfonso Espinosa, B. (2012). Agentes BDI bajo interacciones reguladas: un enfoque basado en flujos de trabajo. http://hdl.handle.net/10251/1796

    Towards Formal Modeling of Affective Agents in a BDI Architecture

    Full text link
    [EN] Affective characteristics are crucial factors that influence human behavior, and often the prevalence of either emotions or reason varies on each individual. We aim to facilitate the development of agents reasoning considering their affective characteristics. We first identify core processes in an affective BDI agent, and we integrate them into an affective agent architecture (GenIA3). These tasks include the extension of the BDI agent reasoning cycle to be compliant with the architecture, and the extension of the agent language (Jason) to support affect-based reasoning, and the adjustment of the equilibrium between the agent s affective and rational sides.This work was supported by the Generalitat Valenciana grant PROMETEOII/2013/019, and the Spanish TIN2014-55206-R project of the Ministerio de Economa y Competitividad.Alfonso Espinosa, B.; Vivancos, E.; Botti, V. (2017). Towards Formal Modeling of Affective Agents in a BDI Architecture. ACM Transactions on Internet Technology. 17(1):5:1-5:23. https://doi.org/10.1145/3001584S5:15:23171Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2014. An open architecture for affective traits in a BDI agent. In Proceedings of the 6th ECTA 2014. Part of the 6th IJCCI 2014. 320--325.Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2016a. Design of an Affective Intelligent Agent on GenIA. Technical Report. DSIC, UPV, Spain.Bexy Alfonso, Emilio Vivancos, and Vicente J. Botti. 2016b. Toward a Systematic Development of Affective Intelligent Agents. Technical Report. DSIC, UPV, Spain.Gordon Willard Allport. 1937. Personality: A Psychological Interpretation. Henry Holt, New York.Albert Bandura. 1977. Self-efficacy: Toward a unifying theory of behavioral change. Psychological Review 84, 2 (1977), 191.Cristina Battaglino, Rossana Damiano, and Leonardo Lesmo. Emotional range in value-sensitive deliberation. In Proceedings of AAMAS’13. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC, 769--776.Antoine Bechara, Hanna Damasio, and Antonio R Damasio. 2000. Emotion, decision making and the orbitofrontal cortex. Cerebral Cortex 10, 3 (2000), 295--307.Rafael H. Bordini and Jomi Fred Hübner. 2010. Semantics for the Jason variant of AgentSpeak (plan failure and some internal actions). In Proceedings of ECAI’10. IOS Press, Amsterdam, The Netherlands, 635--640.Rafael H. Bordini, Jomi Fred Hübner, and Michael Wooldridge. 2007. Programming Multi-Agent Systems in AgentSpeak Using Jason. Wiley.Tibor Bosse, Joost Broekens, João Dias, and Janneke van der Zwaan. 2014. Emotion Modeling. Springer.Scott Brave, Clifford Nass, and Kevin Hutchinson. 2005. Computers that care: Investigating the effects of orientation of emotion exhibited by an embodied computer agent. International Journal of Human-computer Studies 62, 2 (2005), 161--178.Jerome R. Busemeyer, Eric Dimperio, and Ryan K. Jessup. 2007. Integrating Emotional Processes Into Decision-Making Models. Oxford University Press, 29--44.Colin F Camerer, George Loewenstein, and Matthew Rabin. 2011. Advances in Behavioral Economics. Princeton University Press.Martin A Conway. 1990. Autobiographical Memory: An Introduction. Open University Press.Ronald De Sousa. 1990. The Rationality of Emotion. MIT Press.João Dias, Samuel Mascarenhas, and Ana Paiva. 2014. FAtiMA Modular: Towards an Agent Architecture with a Generic Appraisal Framework. Springer International Publishing, 44--56. DOI:http://dx.doi.org/10.1007/978-3-319-12973-0_3Magy Seif El-Nasr, John Yen, and Thomas R Ioerger. 2000. Flame—fuzzy logic adaptive model of emotions. Autonomous Agents and Multi-agent systems 3, 3 (2000), 219--257.Hans Jürgen Eysenck. 1982. Personality, Genetics, and Behavior: Selected Papers. Praeger, Chapter Development of a Theory, 1--48.Shane Frederick. 2005. Cognitive reflection and decision making. The Journal of Economic Perspectives 19, 4 (2005), 25--42.N. H. Frijda, A. S. R. Manstead, and S. Bem. 2000. Emotions and Beliefs: How Feelings Influence Thoughts. Cambridge University Press.Nico H. Frijda. 2007. The Laws of Emotion. Lawrence Erlbaum Associates, Incorporated.Patrick Gebhard. 2005. ALMA: A layered model of affect. In Proceedings of the 4th AAMAS. ACM, New York, NY, 29--36. DOI:http://dx.doi.org/10.1145/1082473.1082478Lewis R. Goldberg and others. 1990. An alternative “description of personality”: The big-five factor structure. Journal of Personality and Social Psychology 59, 6 (1990), 1216--1229.James J. Gross and Ross A. Thompson. 2011. Emotion regulation: Conceptual fundations. In Handbook of Emotion Regulation. Guilford Publications.JonathanY. Ito, DavidV. Pynadath, and StacyC. Marsella. 2010. Modeling self-deception within a decision-theoretic framework. AAMAS 20, 1 (2010), 3--13. DOI:http://dx.doi.org/10.1007/s10458-009-9096-7William G. Kennedy. 2012. Modelling human behaviour in agent-based models. In Agent-based Models of Geographical Systems. Springer, 167--179.Jonathan Klein, Youngme Moon, and Rosalind W. Picard. 2002. This computer responds to user frustration: Theory, design, and results. Interacting with Computers 14, 2 (2002), 119--140.Richard S. Lazarus and Susan Folkman. 1984. Stress, Appraisal, and Coping. Springer.Stacy Marsella and Jonathan Gratch. 2003. Modeling coping behavior in virtual humans: Don’t worry, be happy. In Proceedings of AAMAS’03. ACM, 313--320. DOI:http://dx.doi.org/10.1145/860575.860626Stacy C. Marsella and Jonathan Gratch. 2009. EMA: A process model of appraisal dynamics. Cognitive Systems Research 10, 1 (2009), 70--90.Stacy C. Marsella, Jonathan Gratch, and Paolo Petta. 2010. Computational models of emotion. In A Blueprint for Affective Computing: A Sourcebook and Manual. OUP Oxford, 21--46.Robert R. McCrae and Oliver P. John. 1992. An introduction to the five-factor model and its applications. Journal of Personality 60, 2 (1992), 175--215.Albert Mehrabian. 1996a. Analysis of the big-five personality factors in terms of the PAD temperament model. Australian Journal of Psychology 48, 2 (1996), 86--92. DOI:http://dx.doi.org/10.1080/00049539608259510Albert Mehrabian. 1996b. Pleasure-arousal-dominance: A general framework for describing and measuring individual differences in temperament. Current Psychology 14, 4 (1996), 261--292. DOI:http://dx.doi.org/10.1007/BF02686918Albert Mehrabian and James A. Russell. 1974. An Approach to Environmental Psychology. MIT Press.John-Jules Ch. Meyer. 2006. Reasoning about emotional agents. International Journal of Intelligent Systems 21, 6 (June 2006), 601--619. DOI:http://dx.doi.org/10.1002/int.v21:6Katherine Nelson. 1993. The psychological and social origins of autobiographical memory. Psychological Science 4, 1 (1993), 7--14.Magalie Ochs, David Sadek, and Catherine Pelachaud. 2012. A formal model of emotions for an empathic rational dialog agent. AAMAS 24, 3 (2012), 410--440. DOI:http://dx.doi.org/10.1007/s10458-010-9156-zAndrew Ortony. 2003. On making believable emotional agents believable. In Emotions in Humans and Artifacts, R. P. Trapple, P. Petta, and S. Payer (Eds.). MIT Press, Chapter 6, 189--212.Andrew Ortony, Gerald L. Clore, and Allan Collins. 1988. The Cognitive Structure of Emotions. Cambridge University Press.Rosalind W. Picard and Karen K. Liu. 2007. Relative subjective count and assessment of interruptive technologies applied to mobile monitoring of stress. International Journal of Human-Computer Studies 65, 4 (2007), 361--375.César F. Pimentel and Maria R. Cravo. 2005. Affective revision. In Progress in Artificial Intelligence, Carlos Bento, Amílcar Cardoso, and Gaël Dias (Eds.). LNCS, Vol. 3808. Springer Berlin, 115--126.Gordon D. Plotkin. 1981. A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19. Aarhus University.Anand S. Rao. 1996. Agentspeak(L): BDI agents speak out in a logical computable language. In Proceedings of the 7th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, Rudy Van Hoe (Ed.). Eindhoven, The Netherlands.Rainer Reisenzein, Eva Hudlicka, Mehdi Dastani, Jonathan Gratch, Koen Hindriks, Emiliano Lorini, and J-JC Meyer. 2013. Computational modeling of emotion: Toward improving the inter- and intradisciplinary exchange. IEEE Transactions on Affective Computing 4, 3 (2013), 246--266.Luis-Felipe Rodríguez and Félix Ramos. 2014. Development of computational models of emotions for autonomous agents: A review. Cognitive Computation 6, 3 (2014), 351--375. DOI:http://dx.doi.org/10.1007/s12559-013-9244-xIra J. Roseman. 2001. A Model of Appraisal in the Emotion System: Integrating Theory, Research, and Applications. Oxford University Press, 68--91.James A. Russell. 2003. Core affect and the psychological construction of emotion. Psychological Review 110, 1 (2003), 145--172.Klaus R. Scherer. 2001. Appraisal considered as a process of multilevel sequential checking. Appraisal Processes in Emotion: Theory, Methods, Research 92 (2001), 120.Norbert Schwarz. 2000. Emotion, cognition, and decision making. Cognition 8 Emotion 14, 4 (2000), 433--440.Leila Selimbegović, Isabelle Régner, Pascal Huguet, and Armand Chatard. 2015. On the power of autobiographical memories: From threat and challenge appraisals to actual behaviour. Memory (2015), 1--8.Martin Sewell. 2010. Emotions help solve the prisoner’s dilemma. In Proceedings of the Behavioural Finance Working Group Conference: Fairness, Trust and Emotions in Finance, London. 1--2.Craig A. Smith and Richard S. Lazarus. 1990. Emotion and adaptation. In Handbook of Personality: Theory and Research, Lawrence A. Pervin (Ed.). 609--637.Bas R. Steunebrink, Mehdi Dastani, and John-Jules Ch. Meyer. 2009. A formal model of emotion-based action tendency for intelligent agents. In Proceedings of EPIA’09. Springer-Verlag, Berlin, 174--186. DOI:http://dx.doi.org/10.1007/978-3-642-04686-5_15Bas R. Steunebrink, Mehdi Dastani, and John-Jules Ch. Meyer. 2012. A formal model of emotion triggers: An approach for BDI agents. Synthese 185 (2012), 83--129. DOI:http://dx.doi.org/10.1007/s11229-011-0004-8AW Tucker. 1983. The mathematics of tucker: A sampler. The Two-Year College Mathematics Journal 14, 3 (1983), 228--232.Renata Vieira, Álvaro F. Moreira, Michael Wooldridge, and Rafael H. Bordini. 2007. On the formal semantics of speech-act based communication in an agent-oriented programming language. J. Artif. Intell. Res. (JAIR) 29 (2007), 221--267.G. Weiss. 2013. Multiagent Systems. MIT Press

    A MAS-based infrastructure for negotiation and its application to a water-right market

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10796-013-9443-8This paper presents a MAS-based infrastructure for the specification of a negotiation framework that handles multiple negotiation protocols in a coherent and flexible way. Although it may be used to implement one single type of agreement mechanism, it has been designed in such a way that multiple mechanisms may be available at any given time, to be activated and tailored on demand (on-line) by participating agents. The framework is also generic enough so that new protocols may be easily added. This infrastructure has been successfully used in a case study to implement a simulation tool as a component of a larger framework based on an electronic market of water rights.This paper was partially funded by the Consolider AT project CSD2007-0022 INGENIO 2010 of the Spanish Ministry of Science and Innovation; the MICINN projects TIN2011-27652-C03-01 and TIN2009-13839-C03-01; and the Valencian Prometeo project 2008/051.Alfonso Espinosa, B.; Botti Navarro, VJ.; Garrido Tejero, A.; Giret Boggino, AS. (2014). A MAS-based infrastructure for negotiation and its application to a water-right market. Information Systems Frontiers. 16(2):183-199. https://doi.org/10.1007/s10796-013-9443-8S183199162Alberola, J.M., Such, J.M., Espinosa, A., Botti, V., García-Fornes, A. (2008). Magentix: a multiagent platform integrated in linux. In EUMAS (pp. 1–10).Alfonso, B., Vivancos, E., Botti, V., García-Fornes, A. (2011). Integrating jason in a multi-agent platform with support for interaction protocols. In Proceedings of the compilation of the co-located workshops on AGERE!’11, SPLASH ’11 workshop (pp. 221–226). New York: ACM.Andreu, J., Capilla, J., Sanchis, E. (1996). AQUATOOL, a generalized decision-support system for water-resources planning and operational management. Journal of Hydrology, 177(3–4), 269–291.Bellifemine, F., Caire, G., Greenwood, D. (2007). Developing multi-agent systems with JADE. Wiley.Bordini, R.H., Hübner, J.F., Wooldridge, M. (2007). Programming multi-agent systems in agent speak usign Jason. Wiley.Botti, V., Garrido, A., Gimeno, J.A., Giret, A., Noriega, P. (2011). The role of MAS as a decision support tool in a water-rights market. In AAMAS 2011 workshops, LNAI 7068 (pp. 35–49). Springer.Braubach, L., Pokahr, A., Lamersdorf, W. (2005). Software agent-based applications, platforms and development kits In C.M.K.R. Unland (Ed.), Jadex: a BDI agent system combining middleware and reasoning (Vol. 9, pp. 143–168): Birkhäuser-Verlag.DeSanctis, G.B., & Gallupe, B. (1987). A foundation for the study of group decision support systems. Knowledge based systems, 33(5), 589–609.Eckersley, P. (2003). Virtual markets for virtual goods. Available at http://www.ipria.com/publications/wp/2003/IPRIAWP02.2003.pdf (Accessed April 2012).Fjermestad, J., & Hiltz, S. (2001). Group support systems: a descriptive evaluation of case and field studies. Journal of Management Information Systems, 17(3), 115–161.Fogués, R.L., Alberola, J.M., Such, J.M., Espinosa, A., García-Fornes, A. (2010). Towards dynamic agent interaction support in open multiagent systems. In Proceedings of the 13th international conference of the catalan association for artificial intelligence (Vol. 220, pp. 89–98). IOS Press.Foundation for Intelligent Physical Agents. (2001). FIPA interaction protocol library specification XC00025E. FIPA Consortium.Garrido, A., Arangu, M., Onaindia, E. (2009). A constraint programming formulation for planning: from plan scheduling to plan generatio. Journal of Scheduling, 12(3), 227–256.Giret, A., Garrido, A., Gimeno, J.A., Botti, V., Noriega, P. (2011). A MAS decision support tool for water-right markets. In Proceedings of the tenth international conference on autonomous agents and multiagent systems (Demonstrations@AAMAS) (pp. 1305–1306).Gomez-Limon, J., & Martinez, Y. (2006). Multi-criteria modelling of irrigation water market at basin level: a Spanish case study. European Journal of Operational Research, 173, 313–336.Janjua, N.K., Hussain, F.K., Hussain, O.K. (2013). Semantic information and knowledge integration through argumentative reasoning to support intelligent decision making. Information Systems Frontiers, 15(2), 167–192.jen Hsu, J.Y., Lin, K.-J., Chang, T.-H., ju Ho, C., Huang, H.-S., rong Jih, W. (2006). Parameter learning of personalized trust models in broker-based distributed trust management. Information Systems Frontiers, 8(4), 321–333.Kersten, G., & Lai, H. (2007). European Journal of Operational Research, 180(2), 922–937.Lee, N., Bae, J.K., Koo, C. (2012). A case-based reasoning based multi-agent cognitive map inference mechanism: an application to sales opportunity assessment. Information Systems Frontiers, 14(3), 653–668.Luck, M., & AgentLink. (2005). Agent technology: computing as interaction: a roadmap for agent-based computing. Compiled, written and edited by Michael Luck et al. AgentLink, Southampton.Ma, J., & Orgun, M.A. (2008). Formalizing theories of trust for authentication protocols. Information Systems Frontiers, 10(1), 19–32.Pokahr, A., Braubach, L., Walczak, A., Lamersdorf, W. (2007). Developing multi-agent systems with JADE. Jadex-Engineering Goal-Oriented Agents (pp. 254258). Wiley.Ramos, C., Cordeiro, M., Praça, I., Vale, Z. (2005). Intelligent agents for negotiation and game-based decision support in electricity market. Engineering Intelligent Systems for Electrical Engineering and Communications, 13(2), 147–154.Sierra, C., Botti, V., Ossowski, S. (2011). Agreement computing. KI - Künstliche Intelligenz, 25(1), 57–61.Thobani, M. (1997). Formal water markets: why, when and how to introduce tradable water rights. The World Bank Research Observer, 12(2), 161–179

    Toward a Systematic Development of Affective Intelligent Agents

    Full text link
    The representation of the knowledge that is used for the specification of affective processes in agents, is almost as diverse as number of approaches that have addressed this issue. This diversity is due, to a large extent, to the need of systematic guidelines and standards that support computer scientists on the creation of affective models and architectures. Our aim is to perform a further step towards the standardization of this process, in order to improve the creation and enhancement of affective agent languages, architectures, and models. We offer a method to build affective BDI (Beliefs, Desires, and Intentions) agents, adapted to the problem to solve, and specifically, adapted to the way affect influences the agent behavior. To this end we offer GenIA³ , a General-purpose Intelligent Affective Agent Architecture, which can be committed with specific psychological theories to create the architecture of the final agent. We also offer general guidelines that allow to define the processes performed in the agent architecture. These guidelines allow to select and adapt a BDI agent platform in order to include the processes of the proposed agent architecture and adapt a BDI agent language to include the representation of the required affect-related attributes.Alfonso Espinosa, B.; Vivancos Rubio, E.; Botti Navarro, VJ. (2016). Toward a Systematic Development of Affective Intelligent Agents. http://hdl.handle.net/10251/6243

    Extending a BDI agents' architecture with open emotional components

    Full text link
    Recently an increasing amount of research focuses on improving agents believability by adding affective features to its traditional modeling. This is probably due to the demands of reaching ever more realistic behaviors on agents simulations which extends to several and diverse applications fields. The present work proposes O3A: an Open Affective Agent Architecture, which extends a traditional BDI agent architecture improving a practical reasoning with more “human” characteristics. This architecture tries to address disperse definitions combining the main elements of supporting psychological and neurological theories.Alfonso Espinosa, B.; Vivancos Rubio, E.; Botti Navarro, VJ. (2014). Extending a BDI agents' architecture with open emotional components. http://hdl.handle.net/10251/3912

    mWater prototype #3 review

    Full text link
    mWater is a software demonstrator developed in the Agreement Technologies Project. It is a Multi-Agent System (MAS) application that implements a market for water rights, including the model and simulation of the water-right market itself, the basin, users, protocols, norms and grievance situations. mWater is motivated due to the fact that water scarcity is becoming a major concern in most countries, not only because it threatens the economic viability of current agricultural practices, but because it is likely to alter an already precarious balance among its different types of use.Garrido Tejero, A.; Botti Navarro, VJ.; Giret Boggino, AS.; Alfonso Espinosa, B.; Noriega, P. (2013). mWater prototype #3 review. http://hdl.handle.net/10251/3181

    Consideraciones relacionadas con las inspecciones de software

    No full text
      Las consideraciones que en el presente trabajo se reflejan están enfocadas a enfatizar la importancia y necesidad de la aplicación de técnicas de verificación como las inspecciones de software, en la industria de software. Especialmente si de pequeñas y medianas empresas se trata pues en ellas recae la responsabilidad de lograr una industria de software de excelencia y con la calidad requerida en países en vías de desarrollo. Se analizan además, una serie de autores y las investigaciones que han realizado relativas a la concepción del proceso de inspección de software y los recursos y personal que deben tenerse en cuenta para ello

    CONSIDERACIONES RELACIONADAS CON LAS INSPECCIONES DE SOFTWARE

    No full text
    <span style="font-size: x-small; font-family: Times_New_Roman_Negrita_Cursiv;"><span style="font-size: xx-small; font-family: Times_New_Roman_Negrita_Cursiv;"><p align="justify"> </p></span></span><p align="justify"><p align="justify"> </p><span style="font-size: x-small; font-family: Times_New_Roman083.313;">Las consideraciones que en el presente trabajo se reflejan están enfocadas a enfatizar la importancia y necesidad de la aplicación de técnicas de verificación como las inspecciones de software, en la industria de software. Especialmente si de pequeñas y medianas empresas se trata pues en ellas recae la responsabilidad de lograr una industria de software de excelencia y con la calidad requerida en países en vías de desarrollo. Se analizan además, una serie de autores y las investigaciones que han realizado relativas a la concepción del proceso de inspección de software y los recursos y personal que deben tenerse en cuenta para ello.</span></p&gt
    corecore